Model Resin

Un matériau à impression rapide pour la production de modèles de restauration de haute précision

Model Resin a été développée pour répondre aux exigences de précision, de fiabilité et de production de la dentisterie restauratrice. Imprimez des modèles et des dies précis avec des lignes marginales et des contacts nets, et obtenez rapidement des résultats de haute qualité.

Modèles de couronne et de bridge

Modèles analogues d'implants

Modèles orthodontiques

Modèles pour diagnostic

FLDMBE03

* Peut ne pas être disponible partou

Préparé le : 11 . 09 . 2021

Dans l'état actuel de nos connaissances, les informations présentées dans ce documer sont exactes. Toutefois, Formlabs Inc. ne peut garantir, explicitement ou implicitement, l'exactitude des résultats obtenus en les utilisan

	MÉTRIQUE 1		IMPÉRIAL 1		MÉTHODE
	Pièce brute ²	Pièce post- polymérisée ³	Pièce post- polymérisée ²	Post-Cured ³	
Propriétés mécaniques					
Résistance à la rupture par traction	27 MPa	48 MPa	3970 psi	6990 psi	ASTM D 638-14
Module de traction	1,1 GPa	2,3 GPa	160 ksi	331 ksi	ASTM D 638-14
Allongement à la rupture	14 %	4,8 %	14 %	4.8 %	ASTM D 638-14
Propriétés en flexion					
Résistance à la flexion	25 MPa	85 MPa	3640 psi	12300 psi	ASTM D 790-15
Module de flexion	0,67 GPa	2,2 GPa	97 ksi	320 ksi	ASTM D 790-15
Propriétés de résistance aux che	ocs				
Résistance au choc Izod	23 J/m	24 J/m	0,43 ft-lbs/in	0,45 ft-lbs/in	ASTM D 256-10
Résistance au choc Izod sans entaille	300 J/m	325 J/m	5,6 ft-lbs/in	6,1 ft-lbs/in	ASTM D 4812-19
Propriétés thermiques					
Température de fléchissement sous charge à 1,8 MPa	41 °C	56 °C	104 °F	133 °F	ASTM D 648-16
Température de fléchissement sous charge à 0,45 MPa	47 °C	75 °C	117 °F	167 °F	ASTM D 648-16
Dilatation thermique	108 μm/m/°C	76 μm/m/°C	60 μin/in/°F	43 μin/in/°F	ASTM E 813-13

¹ Les propriétés du matériau peuvent varier en fonction de la géométrie de la pièce, de son orientation lors de l'impression, des paramètres d'impression et de la température.

COMPATIBILITÉ AVEC LES SOLVANTS

Gain de poids pour un cube de 1 cm d'arête, après impression et post-polymérisation, lorsqu'il est plongé dans l'un des solvants suivants pendant 24 heures :

Solvant	Gain de poids après 24 heures, %	Solvant	Gain de poids après 24 heures, %	
Acide acétique à 5 %	0,2	Huile minérale, lourde	0,2	
Acétone	0,9	Huile minérale, légère	0,2	
Eau de Javel (NaOCI ~5 %)	0,1	Eau salée (3,5 % NaCl)	0,2	
Acétate de butyle	< 0,1	Skydrol 5	0,4	
Carburant diesel	0,1	Solution d'hydroxyde de sodium (0,025 % pH 10)	0,2	
Éther monométhylique de diéthylène-glycol	< 0,1	Acide fort (HCl concentré)	< 0,1	
Huile hydraulique	0,1	Éther monométhylique de tripropylène-glycol (TPM)	0,2	
Peroxyde d'hydrogène (à 3 %)	0,1	Eau	0,2	
Isooctane	< 0,1	Xylène	< 0,1	
Alcool isopropylique	< 0,1			

ont été mesurées sur des barres de traction de type IV imprimées sur une imprimante Form 3 avec les paramètres une Form Wash pendant 10 minutes dans de l'alcool isopropylique ≥ 99 %.

 $^{^2}$ Les données pour les échantillons bruts 3 Les données pour les échantillons post-polymérisés ont été mesurées sur des barres de traction de type IV, imprimées sur une imprimante Form 3 avec les paramètres Model Resin à 100 µm, puis lavées dans Model Resin à 100 μm, puis lavées dans une Form Wash pendant 10 minutes dans de l'alcool isopropylique ≥ 99 %, et post-polymérisées à 60 °C pendant 5 minutes dans la Form Cure.